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ABSTRACT

We give a method for finding Grobner-Shirshov bases for the quantum
enveloping algebras of Drinfel’d and Jimbo, show how the methods can be
applied to Kac-Moody algebras, and explicitly find the bases for quantum
enveloping algebras of type Ay (for ¢8 # 1).

1. Introduction

Given a free algebra F over a field k and a set of relations S C F, the problem
of reducing a given element f € F with respect to S involves computational
difficulties, mainly because the reduction procedure may need to make f more

complicated before some relations of S can “take effect”. The main problem
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is that there are implied (possibly simpler) relations which are in the ideal (S)
generated by S but which are not in S.

In 1962 A. I. Shirshov ([Sh2]) introduced the notion of “composition” of poly-
nomials in a free (even nonassociative) algebra, with the aim of determining from
a set of relations a “completed” set which can be used to effectively reduce ele-
ments with respect to the relations. For commutative associative algebras this
sort of relation set is now referred to as a Grobner basis ([AL], [BW]). For the
case of associative algebras the situation was also formulated by Bergman in [Be],
and more recently by Mora ([Mo]) using the term Grébner basis. We propose in
general to add the name of Shirshov to the term.

To describe the compositions of Shirshov, let k{(X) be a free algebra on a set
X and {X) the semigroup generated by X. We need to order the monomials
(X) of the free algebra so as to determine a leading term f for each element
f- An element of k(X) will be called monic if the leading term has a coefficient
of 1 in k. Now if f and g are monic elements of k(X with leading terms f and
g, there will be a so-called composition of intersection if there are a and b
in (X) so that fa = bg = w with total length of f larger than that of b. We
write (f, g)w = fa — bg in that case and note that the leading term (f, g),, < w.
There will be a composition of inclusion if there are a and b in (X) so that
f = agb = w. We write (f,g)» = f — agb in that case and again note that the
leading term is less than w.

Let us take now some set of relations S C k(X) (which we will assume consists
of monic elements). Let us denote by (5) the ideal generated by S in its corre-
sponding ring. If for f,g € S we have a composition (f, g)w = Y aia;s:b;, with
@ €k, a;,b; € (X), s; € S, with a;5;b; < w, then we will say that the compo-
sition (f, ¢)w is trivial with respect to S. Otherwise we will need to expand S
by including all nontrivial compositions (inductively) to obtain a completion S¢.
If S is complete in this sense (S¢ = §), then Shirshov’s Lemma [Sh2] says that
any monic element f of (S) has a reducible leading term f = a3b, where s € §
and a and b are in (X). That Lemma also says that a linear basis for the factor
algebra k(X)/(S) (i.e., as a vector space over k) may be obtained by taking the
set of irreducible monomials in (X).

The set S will then be referred to as a Grobner—Shirshov basis for the ideal
(S). By abusing the definition we may also refer to S as a Grébner—Shirshov
basis for the factor algebra k(X)/(S); we remark that S provides a Hilbert-style
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basis for the relations of this algebra, rather than a linear basis for the algebra
itself {(though the latter may be obtained by taking irreducible monomials as
above). Such a Grobner—Shirshov basis is valuable because if S is finite (or more
generally has only finitely many elements with leading terms below any given
monomial), then for any ¢ € k(X) we can determine by examining only a finite
sequence of leading terms whether ¢ € (S).

This method (for Lie algebras) has been used to determine solvability of
some word problems ([Sh2], [Sh3], [Bo2]), to prove some embedding theorems
([Bol], [Bo4]), and more recently to give Grobner—Shirshov bases for some finite-
dimensional simple Lie algebras ([BoKl1], [BoKI2]). For associative algebras it
has been used for some embedding theorems ([Bo3]) and to construct a linear
basis for free metabelian algebras ([BML]). In this paper we want to indicate how
to obtain a Grobner—Shirshov basis for a quantum enveloping algebra and to find
one explicitly for the case An.

To describe the quantum enveloping algebras of Drinfel’d ([Dr]) and Jimbo
([Ji1]), let k be a field and A = (a;;) an (integral) symmetrizable N-by-N Cartan
matrix, so that a;; = 2, a;; <0 (i.# j), and there exists a diagonal matrix D with
diagonal entries d; nonzero integers such that the product DA is symmetric. Let
q be a nonzero element of k so that ¢*% # 1 for each 7. The quantum enveloping
algebra U, (A) (as in [Ya]) is generated by 4N elements e;, kX, f;, subject to the
following sets of relations (for 1 < 4,7 < N):

K = {kikj — kjk;, kik7' =1, k7 — 1,

+1 tdiag; 4L +1 tdiai; ¢ .41
ek — qT Ik ey, ki f — @ fikT )

k2 -k
T= {eifj — fiei — 5ijm}’

v=0 - v 4t

l—ai]‘ r -
1 - 17 —Qi;—U . . .
St = { > (=YY Y| e ejel, where i # j, ¢ = q“'},

and

14
v=0 - <4t

l—ai]‘ - -
_ 1 — a iy o e . .
5= { > (=Y Gi | TV, where i £, ¢ = qzdl},

where also we use the quantum binomial

i"l—i+1 _ ti—m—l

m ) T, — (for m > n > 0),
n - tr—1
t

1 (for n =0 or m = n).
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To describe this as a factor algebra of a free algebra, let us use generators
z, h, y in place of e, k, f, respectively. The free algebra will be £(Z) with
Z=XUHUY and X = {z;}, H = {h¥'}, Y = {5,}. There will be relation
sets K, T, $*, S~ (in the new variables) as above.

We will prove (Theorem 2.7) that a Grébner—-Shirshov basis for U,(A) (for
q*% # 1 as above) is given by K UT U §*° U S~¢, where $*¢ = (S1)° is the
completion of the set S in the variables z; alone, and similarly for S~¢. We will
then digress somewhat to describe how the general results below can be used to
give an analogous result for Kac-Moody algebras. Then for the case A = Ay
we explicitly give the elements of S*¢ and so recover the same linear bases given
by Rosso and Yamane ([Rol], [Ya]). (For cases beyond An (e.g., Bn,Cn,...)
identities are more complicated and the compositions of Shirshov have yet to be
worked out.)

2. General results

Take F = k(Z) with Z = X UH UY as above, and (Z) the set of monomials
on Z. For u € (Z) define the X-degree degy (u) of u by taking the X-degree of
each z; to be 1. Similarly we can define the Y-degree degy (u) and the H-degree
(where degy(hi ') = 1 still). Then the total degree Deg(u) will be the triple
(deg x (u), degy (u), degy {u)) with lexicographic ordering.

We order the generators by x; > z;, h; > hi_1 >h; > hj_l, and y; > y; if ¢ > j,
with xz; > h;tl > ym for all 4, j, m. Then we order the monomials by u > v if
(1) Deg(u) > Deg(v), or if (2) Deg(u) = Deg(v) but u is greater than v in simple
lexicographic ordering (for u,v € (Z)). This makes {(Z) a fully ordered semigroup
and for any f € F determines the leading term f and therefore Deg(f) = Deg(f).
We can write f = aff-}- f', with 0 # a7 € k and =3 ayuwithu < f. Again,
f is monic if afF=1.

For f,g € F, S C F (possible relations) and w € (Z), let us write f =
gmod(S,w) to mean that f — g = > a;a;s;b; where a; € k, a;,b; € (Z) and
s; € S such that a;s;b; < w. We will write f = g mod(S, degy = n) to mean the
same form for f — g but now requiring degy (a;s;b;) < n. Note that to say S is
complete is to say that (f,¢)w = 0 mod(S,w) for every f,g € S.

Finally for purposes of generality let T" = {t;; = z;y; — y;x; — 6i;p:] i,j < N}
for any choice of p; € k(H). We will use a differential substitution §; =
O(z; — p;) defined on k(X) by 9;(a) = 0 for a € k, 8;(uz;) = d;(u)x; + 6;jup;
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for u € (X), and extending linearly to k(X).

LEMMA 2.1: Let f € k(X), t;; € T'. Then

(f,tji)w = 0:(f) mod({f}VT",w).

Proof: The only possible composition is that of intersection, since f € k(X). So
let w = fy; = bx;y;, where f = f+ f' with f = bx; and f' has only lower terms.
First note that if w = u zwug with uj,us € (X) and u < 7, then w1z, yius =
1 (YiZem + GimpPi)uz mod(T',w) since uiTm¥yitia < U1Tmuay; < w. This allows
the y; to be inductively moved forward in the last congruence in (f,1;)w =
fyi — b(zys — yiry — 6i;pi) = flyi + byaz; + ibps = vif + 0:(f) mod(T, w).
Now the lemma follows since y; f < w. |

LEMMA 2.2: Let f € k(X), L any subset of k(Z). Suppose that
(2.2) 8;(f) =0 mod(L,degx = degy f).

Then for all t;; € T' we have (f,tji)w =0 mod({f}UT" U L,w).

Proof: By induction each term in 9;(f) has X-degree less than degy(f) =
deg x (w), so each term is < w and this follows from Lemma 2.1. |

Again for generality purposes, let S be any set of homogeneous polynomials in
k(X), with L and T" as above.

LEMMA 2.3: Let L be any subset of k(Z) and suppose that for all f € 5 we have
(2.2). Then for all compositions (f, g), of elements f,g € S we have

(2.3) 9i((f,9)w) =0 mod({f,g} U L,degx = degx((f,9)u))-

Proof: We have two kinds of composition. If (f,g), = fa—bg # 0 withu = fa =
bg, then by homogeneity all terms have the same X-degree degy u = degx(fa) =
degx ((f,9)u)- So then 8;((f,g)u) = 0i(f)a — hdi(g) + fOi(a) — 8(b)g. By (2.2)
we have 8;(f}a = 0 mod(L,degy u = degx(fa)) and similarly for g, taking care
of the first two terms. The other two are = 0 mod({{f, g},degy = degx u).

For the other composition (f,g), = f — agb(# 0) with u = f = agb. Again
by homogeneity degy f = degx(agh) = degx((f, ¢)u). Now a similar argument
works in this case. |



102 L. BOKUT’ AND P. MALCOLMSON Isr. J. Math.

We remark that to form the completion M° of some set M C k(Z), it is
sufficient to form M@ = M,

M® = M1 U {(f, g), nontrivial | f,g € MED},

and M¢ = |JM®. As above the completion of some homogeneous set M of
elements in k£(X) will contain only homogeneous elements of k(X). In fact from
the proof above it is easy to see that if every element of M is homogeneous in
every variable z; € X, then any element of M will also be homogeneous in every

variable ;.

LEMMA 2.4: Let Sy be a homogeneous set of polynomials in k(X). Let Lo be
any subset of k(Z) and suppose that for all f € Sy we have (2.2) with L = L.
Then for all ¢ € S§§ we have

(2.4) 0;(¢) = 0 mod(S§ U Ly, degx = degy o).

Proof: For ¢ € S(()l) the conclusion follows from Lemma 2.3 with S = Sy. Now
for ¢ € S((,z) we enlarge Lo to Ly = Ly US((]I) and apply Lemma 2.3 with § = S((,l)
and L = L;. Inductively for ¢ € S((,i) we enlarge to L,y = L;_o U S(()i_l) and
apply Lemma 2.3 with § = Séiq) and L = L;_;. This completes the proof since

S§ is the union and {JL; = S§U Lo. [ ]

S

PROPOSITION 2.5: Let T' be as above, S a set of homogeneous elements o
k(X), and L C k(Z) as before. Suppose that for any f € § we have 0;(f)
0 mod(L,degx = degyx f). Then for any ¢ € S5° we have (¢,tji)w =
mod(S U T'U L, w).

o

Proof: By Lemma 2.1 we have (¢,t;;)w = 9i(¢) mod(S°UT’,w). Using Lemma
2.4 we get the condition (2.2) with S°U L replacing L. Then Lemma 2.2 implies
that (¢,¢i)w =0 mod(S°UT' U L, w). |

Now for T” as before, we can define differential substitutions 8; = d(y; — p;)
on k(Y) analogously as before. There will be corresponding results (2.1')—(2.5),
which we will state because of the nonsymmetry of the ordering.

LEMMA 2.1": Let f € k(Y), t;; € T'. Then
(ti]', f)w = 3,(f) mod({f} U T’, w).
Here w = z; f and degy w = 1 but degx (8;(f)) = 0.
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LEmMA 2.2": Let f € k(Y), L any subset of k{Z). Suppose that
(2.2") 0;(f) = 0mod(L,degy =1).
Then for all t;; € T" we have
(tij, lw =0 mod({f}UT' U L,w).

LEMMA 2.3': Let L be any subset of k(Z) and suppose that for all f € S we
have (2.2'). Then for all compositions (f, g). of elements f,g € S we have

(2.3 9:((£,9)u) = 0mod({f,g} U L,degx =1).

LEMMA 2.4": Let Sy be a homogeneous set of polynomials in k(Y). Let Ly be
any subset of k(Z) and suppose that for all f € Sy we have (2.2') with L = Lo.
Then for all ¢ € S§ we have

(2.4) 9;(¢) = 0 mod(S§ U Lo, degy = 1).

LEMMA 2.5": Let T be as above, S a set of homogeneous elements of k(Y'), and
L C k{Z) as before. Suppose that for any f € § we have

9;(f) = O0mod(L,degx =1).
Then for any ¢ € S° we have
(tij» @)w = 0mod(S°UT' U L, w).

Now we return to the relation sets S*, T, K, S~ of the introduction. We
will want to prove the hypotheses of Lemmas 2.5. After we do that the set
SteuTuS~¢ will have no nontrivial compositions (since there are no compositions
between S*¢ and 57°).

LEMMA 2.6: Let f € S*. Then for any ! (1 <1< N) we have

9i1(f) =0 mod(K,degy = degx f).
Proof: Let

l—a;

f= 3 (-1 [ -y ]
t

v=0 v
with t = ¢°% and let r; = (¢t —t~%)~. Of course here p; = (h? — h;%)r; in
8, = 8(z; — pi)- The only two cases to compute are [ =i and | = j.
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For | = i we have

) . _d Yy —2y le—ag— _
> (qd1(4u+2a”)h? —q d,(4p+2au)hi 2)1‘_ aij U.’ZJ'Z'V 1)

i I+
—a;; —Q;;—V
+ 7 (Z Z (_1)u [ l_l/aij ]t

v=0 A=0

i

x (q4di (aej+u+/\)h12 - q—4di(aij+u+A)hi—2)a.7afj—"wjx:/)

where the congruence is mod(K,degy = degyx f). The coefficient of

l—a;;j—v —1
rih2x; T el is

i

AN
—

(_1)1/ Z [ 1 _Uaij :| q4d,-y.q2d,-a,-j
t

=0

®

ij v

+(=1)vt

A=0

[ 1-ay ] g gt (e +r=1)
vr—1 .

4dil/
___(_1)u [ 1 — Q5 ] q4d —'lqudia,'j
17 q 1 —
t

- (=1)” [ Ly ] T 21 st

v—1 gl — 1 q
_ (—-1)11 1— aij q2di(2—aij—l/) _ q2d,v(a,-j+u._2)
Tgi-1| v-1 . q2div — g—2div

X q2dia"]' (q4d.‘l/ _ 1) _ (q4d,' _ q4d.‘(a,‘j+ll—l))) _ 0
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. -2 1—a;;—v -1 -
The coefficient of r;h; 2x; ““ ™ “z;zt ™! is

% i

- (=1) [ 1—-ay ] q_—4d.-u —1 2

v , -1 1
—1)Y 1—a gihileuty=2) —4d;(as;+v—1)
+ v—1 -1 1

_ (—1)V 1 _ aij -q2d¢(2—a,~j—u) _ q2di(aij+l"~2)
_'q_4di -1 v—1 ; qu“’ _ q—2diV

X q—2d,'a,;j (q4dill _ 1) + (q—-4d,‘ _ q—4di(ai]‘+v—1))) — 0

For | = j we have

l—a;;
v 1- 17 —Qi;—V - v
8Af)=ri§j<—1>[ “f] £ (2 )
t

0 14
v=
l—a;;
1—a" 1—a;; s S
— v 17 3 2d;a;;v 12 —2d;a;;,vp—2
=r Y [ 10| aeen - g e
v=0 i

where the congruence is mod(K,degy = degx f). This last expression is zero

because we have d;a;; = d;a;; and also we have the general equality

Z(—l)” [ m ] t£m=Ur — 0 for m > 1.
n t

n=0

It is easy to verify this by induction by using the equation

[m] zti(m—n)[m_1]+t¢"[m_l] form >n > 1.
n |, n—1 : n t

This completes the proof of Lemma, 2.6. 1
Analogously we have

LEMMA 2.6": Let f € S™. Then for any | (1 <1< N) we have
0(f) =0 mod(K,degy = 1).

THEOREM 2.7: Let A be a generalized Cartan matrix, S(A) = STUKUTUS~
be the Drinfel’d-Jimbo relations of Uy(A). Then ST UK UTUS ¢ is a Grébner—
Shirshov basis for U,(A).

Proof:  There are no compositions between S1¢ and S~¢, between elements
of T and K, nor among elements of T. In view of Lemmas 2.5 and 2.6 (un-

primed and primed) there are no nontrivial compositions between T and S*¢. By
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construction there are no nontrivial compositions among elements of S*¢. It is
easy to check that compositions among elements of K are trivial using K U T.
For example, for f = acjhiil - qid"a"ihfdxj, g = hly - qid"““ylkjﬂ, and
w = z;hE Yy, we have
(f, g)w — q:i:diaglxjylhi:izl _ q:i:d.'ai,' h?:lzjyl

= q:f:dia“yixj h;bl _ q:tdia,-j hlﬂzly{x]

= grhleatend) (y p¥ly; — gy hF ;)

= 0mod(K UT,w).
To complete the proof, consider any ¢ € S*¢ C k(X) and its composition with an
element g;; = z; hfl —gtdiais h;fﬂxj of K withw = Ehiﬂ. Now ¢ is homogeneous
in each variable z; by the remark following Lemma 2.3. Thus we may use the
various gi; € K to “push” the A in (@, gj:)w to the left, and the eventual result
will have a coefficient with the same power of g on each term by homogeneity.

Thus we conclude (¢, gj;)w = 0 mod(S5+°U K, w). The analogous result for 5~¢
completes the proof. |

Because of the Shirshov lemma ([Sh2]) we get the general result on bases.

COROLLARY 2.8 ([Ya}, [Ro2]): For any A we have
Uq(4) = K(Y)/(57) @ k[H] ® k(X)/(ST)

as a k-space.

3. Digression into Kac—Moody algebras

We take a short digression here to demonstrate that the previous lemmas may
be applied to the classical (nonquantized) case of Kac-Moody algebras. Recall
here that, as above, A = (a;;) is a symmetrizable Cartan matrix. Then the
universal enveloping algebra U{A) of the Kac-Moody algebra G(A) is given by
free generators Z = X U H UY and relations as follows (for 1 <¢,7 < N):

K= {hih]’ - hjhi, :Iljh,i - hi.’z‘,‘j +d,~a,-jxi, hiy]‘ i yjhi + diaijyj},
T = {x;y; — yjz; — bijh;},

1-—0,;1'
St = { Z (-1)” [ 1 _Va” ] z; "V giY | where i # j},
v=0
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1—a;
_ 1— as, e o
S = _1 v K¥) ] ij . I/

{;;0( ) [ v ]Zh llg?ll,Wherez;éj}7
and here we use ordinary binomial coefficients ([Ka], (0.3.1)).

To give a Grébner—Shirshov basis for U(A) we want to prove that ST¢U K U

T U S7¢ is complete under compositions. This will follow the same outline as
above.

Let us choose the ordering as before, and define differential substitutions 8; =
8(x; — h;) as before.

LEMMA 3.1: Let f € S*. Then for any [ (1 <1< N) we have

0i(f) = Omod(K,degy = degy f).

Proof: Let

l—aij

=Y (- [ 1-ay ] pl

v=0 v

The only two cases to compute are [ = ¢ and | = ;.

For | = ¢ we have

1—a;; p—1

=3 Tt [T |

S [ 1= ey ] 27 P o

v=0 A=0 v
1—-aij p—1

(St
v=1 pu=0 v

K3

(hi - di(2(—aij - u) + aij))llil_aij_uxj.’lil,'-l)

—a;j —Qi; v

(EE e

v=0 A=0 v

x (e = 2d:(~ag; = v = N))a; ™ 20t

where the congruence is mod(K,degy = degy f). The coefficient of
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e el PR e BT
=0.

. l—a;;—v J
The coefficient of d;x; ™™ “z;z¥ ™! is

2

s [ o ] (~as; — 2u)

n=0

—(-1~! 1_§_U [ Lo ] 21 —ai; —v—A)

by v—1
=(_1)U+1 1 — a"ij U(—‘Qaij — 2V + 2)
v 2
[ 1—ai; 1 2-ai —v)2(1—aiy —v)
+ (=1 [ v—1 ] 2
=0.
For | = j we have
1—-a;;
v 1- (479 —aij—v v
o0 =3 o[ 17 el
v=0
l—a,']' 1
v - Qi4 l—ai_.,-
= Z (—1) [ y 7 jl (h] - deaji(]. — Qi5 — l/))IL'i
v=0

where the congruence is mod(K,degy = degy f). Clearly the coefficient of
h]-a:: ~% is zero, while for the coefficient of x: % we get

1—a;

> (=1 [ e ] 2d;a;i(1 — ai; —v)
v=0 v

l—ay;

v — Q5
= — Zdjaji(l - a,'j) ZO (—1) [ , J ]
=0.

This completes the proof of Lemma. 3.1. |

Analogously for 8; = 8(y; — h;) we have
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LEMMA 3.1": Let f € S™. Then for any ! (1 <1< N) we have

3,(f) =0 mod(K,degy = 1).

Now just as for the quantum case the earlier Lemmas (from both sections) will
imply

THEOREM 3.2: Let A be a generalized Cartan matrix, U(A) the universal en-
veloping algebra of the Kac-Moody algebra G(A) and S(A) = STUKUTUS™
the relations of U(A) as above. Then ST U K UT U S™¢ is a Grobner-Shirshov
basis for U(A).

CoROLLARY 3.3 ([Ka]): For any A we have
U(A)=U"(A) @ k[H|®@ UT(A)
as a k-space. Equivalently, as k-spaces

G(A)=G7(A) @ HoGT(A).

4. The case of Ay

Let ¢® #1 and

2 -1 0 0
-1 2 -1 0
A=AN = g -1 2 0
0 0 0 --- 2

We want to find a Grobner—Shirshov basis for UF(An) = k(X)/(SY), in the
notation of Section 2. To more easily describe these we introduce some new
variables (defined by Jimbo [Ji2], or see [Ya]) X = {z;;| 1 <i<j < N+1}
which generate U; (An) and are to be interpreted as being defined inductively
by
x.._{x"’ J=1i+1,
YT @i j-1Tio1 — @ T jTi o1, § > i+ 1.
The set ST of relations on these will be the Jimbo relations ((1) in Section 3 of
[Ya]), which are indexed by the ways in which one pair can be less than another.
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For this we recall from [Ya] the notation:

C1 ={((3,4), (m,n))| i =m < j <n},

Cy ={((,4), (m,m))| i <m < m < j},

Cs ={((1,4), (m,n))| i <m < j =n},

Cs ={((1,4), (m,n))| i <m < j <n},

Cs ={((i,4), (m,n))] i < j =m < n},

Ce ={((i,5), (m,n))| i <j <m < n}.

Then the set St of Jimbo relations consists of:

TmnTij = 4 *TijTmn if ((4,7), (m,n)) € C1 U Cs,
Tmnlij = TijTmn if ((4,5), (m,n)) € C2 U Cs,
TmnTij = LijTmn + (@° = ¢ )TinTm; i ((3,5), (m,n)) € C4,
Tmnlij — *TijTmn + (Tin if ((3,7), (m,n)) € Cs.

Let F* be the free algebra on X and order the variables by zi; < Tmn if
(i,5) < (m,n) (lexicographically). As before we order the monomials {X) by
length first, and lexicographically for words of the same length. We will obtain:

THEOREM 4.1: For ¢8 # 1 the set S+ of Jimbo relations is a Grébner-Shirshov
basis for U} (An) = F+/(S%).
Thus S+ can be interpreted (in the new variables) as the completion S of

the original S*. Because of the composition lemma we then get:

COROLLARY 4.2 ([Ya]): For ¢® # 1 a linear basis for the algebra U} (An) con-
sists Of elements xhjyrizjz ‘e "’Eikjm with (il,jl) S (’iz,jz) g e S (ikajk) and
k> 0.

Using similar relations for similar y;;, together with Corollary 2.8, we obtain:

COROLLARY 4.3 ([Ya]): Forq® # 1 alinear basis for the algebra U,(An) consists
of elements

.. S1pS2 | BSN . e Ll
YminiYmaony ° ymzmhl h2 h’N Tiyj1Lizga Lirges

with (my,n1) < (mg,ng) < --- < (my,m), (i, 51) < (i2,72) < -+ < (iky i),
k,1 >0 and each s; € Z.

For the proof of Theorem 4.1 we need to check triviality of all compositions
of elements of S*. In any such composition of intersection (f, 9)w we will have
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W = TpnZijThis f= TrmnTi; and § = z;20, with (&, 1) < (4,7) < (m,n). Since
there are so many cases we adopt the notation from [Ya], that

f= TmnZij =~ €ijmnTijTmn + Yijmn

(and similarly for g), where

1 for ((Z,j)a(m’n)) eC’ZUC’ALUC'&
Eijrnn = q—z for (( 7]))( 7n)) S C’1 U CB’
q2 fOI' (( ’J)a( 7")) S CS;
0 for ((z,]),(m,n)) € C;UCUC3U Cs,
Yijmn = (q2 - q_2)xinzmj for ((3,4), (m,n)) € Cy,
ITin for ((¢,7), (m,n)) € Cs
Then
(f, 9w = — €ijmnTiiTmn®hl + YijmnThi + Eklij EmnThiZij — TmnYkiij

=€iimnEklmnlklijTmn T EijmnTijYkimn + YijmnTki

— Eklij EklmnThiYijmn — €klij YklmnTij = Tmnlklijs

where the congruence is mod(S+, w).
This is the same as the polynomial in (4.5) of [Ya] (with z¢ = 1). We may
therefore appeal to his proof to conclude the argument for Theorem 4.1. |
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