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ABSTRACT 

We give a me thod  for finding Gr6bner-Shirshov bases for the  quan tum 

enveloping algebras of Drinfel 'd and Jimbo, show how the  methods  can be 

applied to Kac -Moody  algebras, and explicitly find the  bases for quan tum 

enveloping algebras of type AN (for qS ~ 1). 

1. I n t r o d u c t i o n  

Given a free algebra F over a field k and a set of relations S c_ F, the problem 

of reducing a given element f E F with respect to S involves computational 

difficulties, mainly because the reduction procedure may need to make f more 

complicated before some relations of S can "take effect". The main problem 
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is that  there are implied (possibly simpler) relations which are in the ideal (S) 

generated by S but which are not in S. 

In 1962 A. I. Shirshov ([Sh2]) introduced the notion of "composition" of poly- 

nomials in a free (even nonassociative) algebra, with the aim of determining from 

a set of relations a "completed" set which can be used to effectively reduce ele- 

ments with respect to the relations. For commutative associative algebras this 

sort of relation set is now referred to as a Gr6bner basis ([AL], [BW]). For the 

case of associative algebras the situation was also formulated by Bergman in [Be], 

and more recently by Mora ([Mo]) using the term Gr6bner basis. We propose in 

general to add the name of Shirshov to the term. 

To describe the compositions of Shirshov, let k (X)  be a free algebra on a set 

X and (X} the semigroup generated by X. We need to order the monomials 

(X) of the free algebra so as to determine a l ead ing  t e r m  f for each element 

f .  An element of k (X )  will be called m o n i c  if the leading term has a coefficient 

of 1 in k. Now if f and g are monic elements of k ( X  t with leading terms f and 

~, there will be a so-called c o m p o s i t i o n  of  i n t e r s e c t i o n  if there are a and b 

in (X) so that  f a  -- b~ = w with total  length of ] larger than that  of b. We 

write (f ,  g)~ = f a  - bg in that  case and note that  the leading te rm (f,  g),, < w. 

There will be a c o m p o s i t i o n  of  inc lus ion  if there are a and b in (X) so that  

] = a-gb = w. We write (f,  g)~ = f - agb in that  case and again note that  the 

leading te rm is less than w. 

Let us take now some set of relations S C_ k (X)  (which we will assume consists 

of monic elements). Let us denote by (S) the ideal generated by S in its corre- 

sponding ring. If for f ,  g E S we have a composition (f ,  g)~ = ~ c~a~s~b~, with 

ai E k, ai,bi C (X), si E S, with ais~bi < w, then we will say that  the compo- 

sition (f,  g)~ is t r i v i a l  with respect to S. Otherwise we will need to expand S 

by including all nontriviat compositions (inductively) to obtain a completion S c. 

If S is complete in this sense (S c = S), then Shirshov's Lemma [Sh2] says that  

any monic element f of (S) has a r e d u c i b l e  leading term f = a-$b, where s C S 

and a and b are in (X). Tha t  Lemma also says that  a l inear  basis for the factor 

algebra k ( X ) / ( S )  (i.e., as a vector space over k) may be obtained by taking the 

set of irreducible monomials in (X). 

The set S will then be referred to as a G r 6 b n e r - S h i r s h o v  bas i s  for the ideal 

(S). By abusing the definition we may also refer to S as a Grbbner-Shirshov 

basis for the factor algebra k (X ) / (S ) ;  we remark that  S provides a Hilbert-style 
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basis for the relations of this algebra, rather than a linear basis for the algebra 

itself (though the latter may be obtained by taking irreducible monomials as 

above). Such a Grbbner-Shirshov basis is valuable because if S is finite (or more 

generally has only finitely many elements with leading terms below any given 

monomial), then for any ¢ C k(X} we can determine by examining only a finite 

sequence of leading terms whether ¢ E (S). 

This method (for Lie algebras) has been used to determine solvability of 

some word problems ([Sh2], [Sh3], [Bo2]), to prove some embedding theorems 

([Boll, [Bo4]), and more recently to give Grbbner-Shirshov bases for some finite- 

dimensional simple Lie algebras ([BoKll], [BoK12]). For associative algebras it 

has been used for some embedding theorems ([Bo3]) and to construct a linear 

basis for free metabelian algebras ([BML]). In this paper we want to indicate how 

to obtain a Grbbner-Shirshov basis for a quantum enveloping algebra and to find 

one explicitly for the case AN. 

To describe the quantum enveloping algebras of Drinfel'd ([Dr]) and Jimbo 

([Jill), let k be a field and A = (aij) an (integral) symmetrizable N-by-N Cartan 

matrix, so that  a i i =  2, aij <_ 0 (i 5~ j), and there exists a diagonal matrix D with 

diagonal entries di nonzero integers such that the product D A  is symmetric. Let 

q be a nonzero element of k so t h a t  q4d~ ~ 1 for each i. The quantum enveloping 

algebra Uq(A) (as in [Ya]) is generated by 4N elements e~, k~ 1, f~, subject, to the 

following sets of relations (for 1 < i , j  < N): 

K = { k i k j - k j k i ,  kik~ - 1 -  1, k ~ l k i -  1, 

ejk~l  q+d~a~jk~lej ' k+l f  _±d.a.j~ k+l~ 
- -  i J - - q  " " J J  i .~, 

T = { e J j -  f j e i - ~ ,  q2k2~d~ - q-2d~ k:2 }, 

S + ( -1 ) "  1 - aij l - ~ j - .  = e i ejei,  where i ¢ j ,  t = q2d~ , 
L,=O /'1 t 

and 

S -  = {1--a J E 1 } ~ =0(_ l )  ~ 1 - aij f l - a l j - v  f ~ q2d, i j f~ ,  w h e r e i 7  ~j, t =  , 
v t 

] { n tin--i+1 -- t i-m-1 
m = [L=I ti _ t -  ~ (for m > n > 0), 

n t 1 ( f o r n = O o r m = n ) .  

where also we use the quantum binomial 
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To describe this as a factor algebra of a free algebra, let us use generators 

x, h, y in place of e, k, f ,  respectively. The free algebra will be k(Z} with 

Z = X U H U Y  and X = {x~}, H =  t(h±l~ J, Y = {Y,}. There will be relation 

sets K,  T, S +, S -  (in the new variables) as above. 

We will prove (Theorem 2.7) that  a Grhbner-Shirshov basis for Uq(A) (for 

q4d, ~ 1 as above) is given by K U T U S +~ t2 S -c,  where S +~ = (S+) ¢ is the 

completion of the set S + in the variables x~ alone, and similarly for S -¢. We will 

then digress somewhat to describe how the general results below can be used to 

give an analogous result for Kac-Moody algebras. Then for the case A = AN 

we explicitly give the elements of S ±~ and so recover the same linear bases given 

by Rosso and Yamane ([Rol], [Ya]). (For cases beyond AN (e.g., BN, CN~...) 

identities are more complicated and the compositions of Shirshov have yet to be 

worked out.) 

2. Genera l  results  

Take F = k(Z} with Z = X U H U Y as above, and (Z) the set of monomials 

on Z. For u E (Z) define the X-degree deg x (u) of u by taking the X-degree of 

each xl to be 1. Similarly we can define the Y-degree degy (u) and the H-degree 

(where degH(h~ 1) = 1 still). Then the total  degree Deg(u) will be the triple 

(deg x (u), deg H (u), degy (u)) with lexicographic ordering. 

We order the generators by xi > xj,  hi > hi -1 > hj > h~ 1, and yi > yj i f / >  j ,  

with xi > h~ 1 > Ym for all i, j ,  m. Then we order the monomials by u > v if 

(1) Deg(u) > Deg(v), or if (2) Deg(u) = Deg(v) but u is greater than v in simple 

lexicographic ordering (for u, v E (Z)). This makes (Z) a fully ordered semigroup 

and for any f E F determines the leading term f and therefore Deg(f)  = Deg(f) .  

We can write f = aTf  + if ,  with 0 ¢ a 7 E k and ff  = ~ a~u with u < f .  Again, 

f is monic if a 7 = 1. 

For f , g  E F, S C_ F (possible relations) and w E (Z), let us write f = 

g mod(S, w) to mean that  f - g = ~ alals~bi where ~i E k, a~, b~ C (Z) and 

si E S such that  alsib~ < w. We will write f = g rood(S, deg x = n) to mean the 

same form for f - g but now requiring degx(a~sibi ) < n. Note that  to say S is 

complete is to say that  (f,  g)~ - 0 rood(S, w) for every f ,  g E S. 

Finally for purposes of generality let T '  -- {t~j = xiyj - yjxi - 5ijp~] i , j  <_ N}  

for any choice of p~ E k(H). We will use a d i f f e ren t i a l  s u b s t i t u t i o n  Oi = 

O(xl ~ pl) defined on k(X} by O~(a) = 0 for a E k, Oi(uxj) = O~(u)xj + 51jupl 
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for u e (X), and extending linearly to k (X) .  

LEMMA 2.1: Let  f E k ( X ) ,  tj~ E T' .  Then 

(f ,  tjl)~o =- O~(f) mod({f}  U T' ,  w). 

Proof: The only possible composition is that  of intersection, since f E k ( X ) .  So 

let w -- fYi = bxjy~, where f = f +  f '  with f = bxj and ff  has only lower terms. 

First note that  if u = UlXmU2 with Ul, u2 c (X} and u < f ,  then UlXmYiU2 

ul(y~x,~ + 6~mp~)u2 mod(T ' ,w)  since UlX,~y~u2 <_ ulx,~u2y~ < w. This allows 

the y~ to be inductively moved forward in the last congruence in ( f ,  t j i)w = 

fy i  - b(xjyi  - yixj  - 5ijpi) = f ' y i  + by~xj + 5~jbpi -- y~f + Oi(f) mod(T ' ,w) .  

Now the lemma follows since Y~7 < w. | 

LEMMA 2.2: Let  f e k(X>, L any subset o f k ( Z ) .  Suppose that 

(2.2) O~(f) - 0 mod(L, deg x = deg X f ) .  

Then for all t j i e  T'  we have (f,  tji)w - 0 mod({f}  U T 1 U L, w). 

Proof: By induction each te rm in O~(f) has X-degree less than d e g x ( f )  -- 

degx(w),  so each term is < w and this follows from Lemma 2.1. | 

Again for generality purposes, let S be any set of homogeneous polynomials in 

k ( X ) ,  with L and T I as above. 

LEMMA 2.3: Let  L be any subset o f k ( Z )  and suppose that for all f E S we have 

(2.2). Then for a11 compositions (f ,  g)~ of elements f ,  g E S we have 

(2.3) 0i ((f,  g)u) -- 0 mod({f ,  9} U L, deg x = deg x ((f,  g)~)). 

Proof: We have two kinds of composition. If (f,  g)~ = f a - b g  ¢ 0 with u = f a  = 

by, then by homogeneity all terms have the same X-degree deg x u = deg x ( fa )  = 

d e g x ( ( f , 9 ) ~  ). So then O~((f,9)u ) = Oi(f)a - 50i(9) + fOi(a) - O(b)9. By (2.2) 

we have O~(f)a =- 0 mod(L, deg x u = d e g x ( f a ) )  and similarly for g, taking care 

of the first two terms. The other two are - 0 mod({f ,  9}, degx = degx u). 

For the other composition ( f ,  9)~ = f - agb(¢ 0) with u = 7 = a~b. Again 

by homogeneity deg x f = degx(agb ) = degx(( f ,g) ,~ ). Now a similar argument 

works in this case. | 
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We remark that  to form the completion M ~ of some set M C_ k(ZI, it is 

sufficient to form M (°) = M, 

M (i) = M (i~1) U {( f ,g )~  nontrivial ] f , g  E M(i-1)) ,  

and M ~ = U M(i). As above the completion of some homogeneous set M of 

elements in k{X)  will contain only homogeneous elements of k ( X  I. In fact from 

the proof above it is easy to see that  if every element of M is homogeneous in 

every variable xi E X,  then any element of M ~ will also be homogeneous in every 

variable x~. 

LEMMA 2.4: Let So be a homogeneous set of polynomials in k (X) .  Let Lo be 

any subset of k(Z) and suppose that  for all f E So we have (2.2) with L = Lo. 

Then for all ¢ E S~ we have 

(2.4) 01(¢) - 0 mod(S~ U Lo,deg x = deg x ¢). 

Proof'. For ¢ E So (1) the conclusion follows from Lemma 2.3 with S -- So. Now 

for ¢ E So (2) we enlarge Lo to L1 = LoUS~ 1) and apply Lemma 2.3 with S -- S (1) 

and L -- L1. Inductively for ¢ E S~ i) we enlarge to Li-1 = Li-2 U So (i-1) and 

apply Lemma 2.3 with S = S (i-1) and L ~- Li_~. This completes the proof since 

S~ is the union and U L~ -- S~ u Lo. I 

PROPOSITION 2.5: Let T '  be as above, S a set of homogeneous elements of 

k (X) ,  and L C_ k<Z) as before. Suppose that for any f E S we have Oi(f) =- 

0 mod(L, deg x -- deg X f ) .  Then for any ¢ E S c we have (¢,tj{)~ --- 0 

mod(S  ~ U T '  U L, w). 

Proof: By Lemma 2.1 we have (¢, tj~)~ - 0i(¢) mod(SCUT ', w). Using Lemma 

2.4 we get the condition (2.2) with S c U L replacing L. Then Lemma 2.2 implies 

that  (¢, tj~)~ - 0 mod(S  ~ U T '  U L, w). I 

Now for T ~ as before, we can define differential substitutions Oi = O(yl --* Pi) 

on k(Y)  analogously as before. There will be corresponding results (2.1~)-(2.5~), 

which we will state because of the nonsymmetry of the ordering. 

LEMMA 2.11: Let f E k(Y) ,  tlj E T t. Then 

(tlj, f )~  =- Oi(f) mod({f}  U T ~, w). 

Here w = x i ]  and deg x w = 1 but degx(Oi(f))  = 0. 
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LEMMA 2.2 ' :  Let  f E k(Y},  L any subset o f k ( Z } .  Suppose that 

(2.2') O~(f) - 0 m o d ( n ,  deg x = 1). 

Then for all tlj E T '  we have 

(tij ,  f ) ~  -=- 0 m o d ( { f }  u T '  U L, w). 

LEMMA 2.3' :  Le t  L be any subset of  k(Z)  and suppose that for a11 f E S we 

have (2.2'). Then for a11 compositions ( f ,  g)~ of elements f ,  g E S we have 

(2.3') O~((f,g)~) =- 0 m o d ( { f , g }  U L, deg x = 1). 

LEMMA 2.4 ' :  Let So be a homogeneous set of polynomials in k (Y) .  Let  Lo be 

any subset of  k (Z)  and suppose that for all f E So we have (2.2') with L = Lo. 

Then for ali ¢ E ~oo we have 

(2.4') 0i(¢)  -= 0 mod(S~ U Lo, deg x = 1). 

LEMMA 2.5 ' :  Let T'  be as above, S a set  of homogeneous elements of  k (Y ) ,  and 

L C_ k(Z)  as before. Suppose that for any f E S we have 

O~(f) - Omod(L,  deg x = 1). 

Then for any ¢ E S c we have 

(t~j, ¢)~ -= 0 m o d ( S  c U T '  U L, w). 

Now we re tu rn  to the relat ion sets S +, T, K ,  S -  of the introduct ion.  We 

will want  to  prove the  hypotheses  of L e m m a s  2.5. After  we do t h a t  the  set  

S+~UTUS -~ will have no nontr ivial  composi t ions (since there are no composi t ions  

be tween S +c and S-C).  

LEMMA 2.6: Let  f E S +. Then for any 1 (1 < l < N )  we have 

O~(f) - 0 m o d ( K ,  deg x = deg x f ) .  

Proof" Let  
1--aij 
V~ (_1)~, | 1 - e l i  | 1--alj--u ts 

[ ' 1  

I -" ~..~ L J Xi XjX i , 
v=0 V t 

wi th  t = q2d, and  let r~ = (t - t - l )  -1 .  Of  course here pt = (h~ - hF2)r~ in 

Ot = O(xt --~ pt). The  only two eases to compute  are l = i and l = j .  
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For 1 = i we have 

Isr.  J.  M a t h .  

1--a~j u--1 

O~(,/--r~ Z ~ ( _ ~ [ 1 - o ~ ]  ~_o~_~ ~-~-1 x i x j x ~  (h2~ - h;2)x~ 
V u=l  #=0 l 

+ ri ~2  E (-1)" i - a ~ j  
V 

u=O A=O 

--rl ( - 1 ) "  1 - aij 
/2 

\ v = l  ,u=O t 

× (qd,(4.÷~aij)h~ _ q-d,(4.÷~o,~)hj)x~-O,J-%xr-~ ) 

[ ] 
X,v=O A=O /Y t 

4d-(a~j+v+X) 2 ,~-4d~(a~j+v+A)h-2~.-ai~-v,~.~v" ~ 
× (q ' hi - u  "~i J'i ~ j ~ i ]  

xl ~ni - 
t 

where the congruence is m o d ( K ,  deg x = d e g x f  ). 
"h2 1--aiJ--V'r "rv--1 is r~.~i x i  ~2 ~i 

The coefficient of  

v - 1  1  z[1 I q4d q2dai  
~ = 0  Y t 

1--a~j --v 

) ,=0 t 

_-(_1)~ [ 1_o~ 1 ~ -  1 ~ , ,  _ 1 ~'a~ 
12 J t  ] q -4d i (a~ j+v-2)  __ lq4d i (a~ i+v_ l )  

- - q ~  U' l  u - 1 t \ ~ _--q--:~7-~ 

× q2d, a, i (q4d, v _ 1) - (q4d, _ q 4 d , ( a l j + v - 1 ) ) )  = O. 
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The coefficient of r ih~2x~-a 'J-Vxjx~ -1 is 

] q-4d~v _ 1 
_ (_1)  . 1 - alj ~ - i q-2a,alj 

V t 
[ ] q4di(alj+v-2) 

+ (_1)~ 1 - aij - lq-4di(a~j+v_l) 
v - 1 t q - 4 d ~  _ 1 

[ ( - 1 ) "  1 - aij 
- -q---~ ~ 1 v - 1 t q2d~, _ q-2d~, 

× q-2diaij(q4dlv _ 1) + (q-4dl _ q-4di(a~j+u-1))) = O. 

For l = j we have 

1--alj 
= r~ Z (~1~' l -a~  ' x~a~ . . . .  ,~  ~ ~lX~ 

r "l 
oj(f) 

v = o  L J v t 

1--alj 
_ r i E ( _ l ) V [ 1 - - a i j ]  1-alj 2djajiv2 x i (q hj - -  q-2dya~i'h~2) 

I/ 
u=O t 

where the congruence is mod(K ,  deg x = deg X f ) .  This last expression is zero 

because we have djaji  = diaij and also we have the general equality 

m [ ]  
E ( _ I ) ~  m t +(m-1)n = 0 for m_> 1. 
n = O  n t 

It  is easy to verify this by induction by using the equation 

1] 1] 
n t r t - - 1  t n t 

This completes the proof  of Lemma 2.6. | 

Analogously we have 

LEMMA 2.6~: Let f C S - .  Then for any I (1 < l < N )  we have 

Ol(f) =-0 mod(K,  deg x = 1). 

THEOREM 2.7: Let  A be a generalized Cartan matrix,  S (A)  = S + U K U T U S -  

be the Drinfel 'd-Jimbo relations of  Uq(A). Then S+CU K U T U S  -c  is a Gr6bner-  

Shirshov basis for Uq( A).  

Proo£" There are no composit ions between S +c and S -c ,  between elements 

of T and K,  nor among  elements of T. In  view of Lemmas  2.5 and 2.6 (un- 

pr imed and primed) there are no nontrivial composit ions between T and S +c. By 
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construction there are no nontrivial compositions among elements of S +c. I t  is 

easy to check that  compositions among elements of K are trivial using K U T. 

For example, for f x jh~  1 ~±d'a'Jh=~lx h±l q+dla, ±1 = - - ~  ~ j, g = ~ Yt-- Ylk~ , and 

w -= x jh ~ l y t  we have 

q±d~alt x ylh±l _ q+diai3 hi1 ( f ,g )w = J i ~ xjyl  
q±d~a~t.. ~ I,+1 q±dia i j  h ± l  

=-- Yl3~jni - i y l X j  

~- (l-±d'(alj+ai~)/'" ~,Ylttil"4-1-xJ -- y l h ~ l x j )  

= 0 mod(K  U T, w). 

To complete the proof, consider any ¢ E S +~ C_ k ( X )  and its composition with an 
- -  ± 1  element 9j~ = x jh~  ~ _q±d,~j  h~ lx j  of K with w = ¢h~ . Now ¢~ is homogeneous 

in each variable x~ by the remark following Lemma 2.3. Thus we may use the 

various gu E K to "push" the h~ 1 in (¢, gj~)~ to the left, and the eventual result 

will have a coefficient with the same power of q on each te rm by homogeneity. 

Thus we conclude (¢, gj~)~ = 0 mod(S +~ U K, w). The analogous result for S -~ 

completes the proof. | 

Because of the Shirshov lemma ([Sh2]) we get the general result on bases. 

COROLLARY 2.8 ([Ya], [Ro2]): For any A we have 

Uq(A) = k ( Y ) / ( S - )  ® k[H] ® k ( X } / ( S  +) 

as a k-space. 

3. Digression into Kac-Moody algebras 

We take a short digression here to demonstrate that  the previous lemmas may 

be applied to the classical (nonquantized) case of Kac-Moody algebras. Recall 

here that ,  as above, A = (a~j) is a symmetrizable Caf tan  matrix. Then the 

universal enveloping algebra U(A) of the Kac-Moody algebra ~(A) is given by 

free generators Z = X U H U Y and relations as follows (for 1 < i , j  < N): 

K = {hihj  - hjhi,  x jh i  - hixj  + dia~jxi, hiyj - yjhi  + diai jy j} ,  

T = {x~yj - y~zi - ~ijhi}, 

= xi x jx~,  where i # j , 
v 
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( 1--aij [ 

1--aij --v u I Yi YJYi, w h e r e i # j  , 

and here we use ord inary  b inomial  coefficients ([Ka], (0.3.1)). 

To give a Gr6bner -Sh i r shov  basis for U(A)  we want  to prove t ha t  S +c U K U 

T U S - c  is comple te  under  composi t ions.  This  will follow the  same  outl ine as 

above. 

Let  us choose the ordering as before, and define differential subs t i tu t ions  zgl = 

O(xi ~ hi) as before. 

LEMMA 3.1: Let  f E S +. Then for any I (1 < l < N )  we have 

Ol(f)  - 0 m o d ( K ,  deg x = deg x f ) .  

Proo~ Let 

1--aij 

~- X i Xj  X i . 
v=O /2 

The  only two cases to compute  are l -- i and l = j .  

For l = i we have 

1--aij u--1 

O i ( f ) =  E ~ ( - 1 ) ~ [  l - a i j  ]xil-a~J . . . .  x j x i  ~- l .n ix i  
u=l tt----O P 

[ ] + (_l )U 1 - aij xi  n ix i  x j x i  
v=O A=O P 

= - 1 ) "  1 - aij 

\ u=l t~=O P 

\ \  1--aij--u v - - lh  x (hi - d i ( 2 ( - a l j  - #) + a i j ) ) x  i x j x  i ) 

+(f 
\ v = O  .k=O // 

X (h  i -- 2 d i ( - a i j  - • -- .~))xTalJ-- t~XjX~ ~ 
] 

where the congruence is m o d ( K ,  deg x = d e g x . f ) .  The  coefficient of 
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h 1--al j - -v  v--1 ix~ xjx~ is 

v--1 1 - -a l j - - v  

.=o v ~=o v -  1 

~ - ( - I V  - a ~ j  ( 2  - a~ j  - ~,) 
v v - 1  

~ 0 .  

1--aij --v v--1 The coefficient of a~x i xjx~ is 

v--1 

,~=0 

1--aij - -v  

~ ~/~ ~ ~ [1a3~1 l ~  a~ -~ -~ '  

----(-1)~+1[ 1-vai j  ] v(-2aij 2- 2v + 2) 

+ (-1)~" [ 1-aiJ ] (2-ai j  -v)2(1-a~j  2 

1--ai j  

v=O 

1--gi j  

- z (-~)~[~-a~](~~ - ~ a ~ ( l - a ~ - ~ - a ~  
v=O 

where the congruence is mod(K, deg x = deg x f ) .  Clearly the coefficient of 
h 1 - a l j  1 - a i j  jx i is zero, while for the coefficient of x i we get 

1--aij 

E -(-1)~'[ 1-aiJ ] 
v=O 

1--a~j 

=-2djaji(1-aij) E (-1)~ [ -aij ] 
v=O V 

~ 0 .  

This completes the proof of Lemma 3.1. | 

Analogously for Oi = O(yi ~ hi) we have 

--0. 

For l = j we have 
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LEMMA 3.11: Let f E S - .  Then  for any l (1 < l < N )  we have 

Oz(f) - -0  mod(K, deg x = 1). 

Now just as for the quantum case the earlier Lemmas (from both sections) will 

imply 

THEOREM 3.2: Let A be a generalized Cartan matrix, U ( A )  the universal en- 

veloping algebra of the K a c - M o o d y  algebra G(A) and S ( A )  = S + U K U T U S -  

the relations o f  U(A)  as above. Then S +c U K U T U S -~ is a Gr6bner-Sh irshov  

basis for U ( A ). 

COROLLARY 3.3 ([Ka]): For any A we have 

U(A)  = U - ( A )  ® k[H] N U+(A)  

as a k-space. Equivalently,  as k-spaces 

G(A) = G-(A) ® H ® G+(A). 

4. T h e  case  of  A N  

Let qS 5£ 1 and 

2 - 1  0 . . .  0 

- 1  2 - 1  . . .  0 

A = Arv = 0 - 1  2 . . .  0 

0 0 0 . . .  2 

We want to find a Grbbner-Shirshov basis for U ¢ ( A N )  = k(X) / (S+) ,  in the 

notation of Section 2. To more easily describe these we introduce some new 

variables (defined by Jimbo [Ji2], or see [Ya]) )(  = {xi j l  1 <_ i < j < N + 1} 

which generate U ~ ( A N )  and are to be interpreted as being defined inductively 

by 
xi, j = i + 1 ,  

X i j  -~ 
q x l , j - l X j - - l , j  -- q - - l x j - l , j X l , j - - 1 ,  j > i + 1. 

The set 2 + of relations on these will be the Jimbo relations ((1) in Section 3 of 

[Ya]), which are indexed by the ways in which one pair can be less than another. 



ii0 

For this we recall from [Ya] the notation: 

C1 ={(( i , j ) ,  (m, n)) I 

j), n))t 
C 3 : { ( ( i ,  j ) ,  (m,  n))[  

C4 ={ ((i, j),  (m, n)) I 

C5 ={((i, j ) ,  (m, n)) I 

C6 =( ( ( i , j ) ,  (m, n)) I 

Then the set S+ of Jimbo relations consists of: 

X m n X i j  -- q - 2 x i j X m n  

X m n X i j  -- Xi jXrn  n 

X m n X i j  __ Xi jXrn  n _~_ (q2 _ q - 2 ) X i n X r n j  

X m n X i j  -- q 2 x i j X m n  -'~ qXin 

L. BOKUT' AND P. MALCOLMSON 

= m < j < n}, 

< m < n < j } ,  

< m < j = n } ,  

< m < j < n } ,  

< j = m < n}, 

< j < m < n } .  

Isr. J. Math. 

if ((i, j),  (m, n)) e C1 U C3, 

if ((i , j) ,  (m,n))  G C2 U C6, 

if ( ( i , j ) , ( m , n ) )  e C4, 

if ((i , j) ,  (m,n))  e C5. 

Let F + be the free algebra on )(  and order the variables by x~j < Xmn if 

( i , j )  < (m,n)  (lexicographically). As before we order the monomials ()(> by 

length first, and lexicographically for words of the same length. We will obtain: 

T~EOREM 4.1: For qS :~ 1 the set 8 + of Jimbo relations is a Gr6bner-Shirshov 

basis for US(AN ) = F+/(S+) .  

Thus S+ can be interpreted (in the new variables) as the completion S +c of 

the original S +. Because of the composition lemma we then get: 

COROLLARY 4.2 ([Ya]): For aS ¢ 1 a linear basis for the algebra US(AN ) con- 

sists of elements xi l j lx~2j~. . .x~j~,  with ( i l , j l )  <_ (i2,j2) _<""  _< (ik,jk). and 

k>_o. 

Using similar relations for similar Yij, together with Corollary 2.8, we obtain: 

COROLLARY 4.3 ([Ya]): For q8 ¢ 1 a linear basis for the algebra Uq(AN) consists 

of elements 

. . .  - ,  . . .  • "" h N XiljlXi2j 2 Xi~j~ 

with (ml ,n l )  _< (m2,n2) <_ "-" _< (ml,nt), ( i l , j l )  <_ (i2,j2) _< "'" _< (ik,jk), 

k,l  _> 0 and each s¢ E Z. 

For the proof of Theorem 4.1 we need to check triviality of all compositions 

of elements of S+. In any such composition of intersection (f, g)~ we will have 
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W = X,~nXijXkl, f = X,~X~j  and ~ = x i j xk l ,  with (k , I )  < ( i , j )  < (re, n).  Since 

there are so m a n y  cases we adop t  the no ta t ion  from [Ya], t ha t  

f ~ XmnXij - CijmnXijXmn Jr Yijrnn 

(and s imilar ly  for g), where 

1 f o r ( ( i , j ) , ( m , n ) ) E C 2 u C 4 u C 6 ,  
= q-2 f o r ( ( i , j ) , ( m , n ) ) e C l U C 3 ,  

¢ijm,~ q2 for ((i, j ) ,  (m, n)) e C5; 

0 for ( ( i , j ) , ( m , n ) )  e C 1 U C : u C 3 U C 6 ,  
yijm~ -- (q2 ~ q--2)XinXm j for ( ( i , j ) ,  (m, n)) E C4, 

qxi,~ for ( ( i , j ) ,  (re, n))  e C5. 

Then  

(f ,  g)~ = - eijm,~xijx, ,~xk~ + YijmnXkl "k CklijXmnXktXij -- XmnYklij 

~---~ijmn~klmnYklijXmn Jr gijmnXijYklrnn "Jr YijmnXkl 

-- Cklij CklmnXklYijmn -- ~klij YklmnXij -- XmnYklij 

where the congruence is m o d ( S  +, w). 

This  is the same as the polynomial  in (4.5) of [Ya] (with z~ = 1). We m a y  

therefore appea l  to his p roof  to  conclude the a rgument  for T h e o r e m  4.1. | 
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